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This paper presents a further improvement of the mean-field method of obtaining the Leslie viscosity
coefficients of biaxial nematic liquid crystals presented in our last paper@M. Fialkowski, Phys. Rev. E55, 2902
~1997!#. We carry out the calculations without using simplifying procedures employed in the cited paper. The
viscosities presented are expressed by suspension parameters such as second- and fourth-rank order param-
eters, three diffusion constants, temperature, number density, and certain factors depending on the shapes of the
molecules. Viscous properties of uniaxial phase composed by biaxial molecules are also considered. We show
that our results recover existing formulas for six Leslie viscosities obtained for the uniaxial system. The
problem of the rotational diffusion tensor has been investigated within the hydrodynamic approximation. The
rotational diffusion coefficients have been expressed by the common shear viscosityh. As an example, we also
present the viscosities calculated numerically for a mean-field model of biaxial nematic liquid crystals.
@S1063-651X~98!02204-1#

PACS number~s!: 61.30.2v, 66.20.1d, 83.70.Jr
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I. INTRODUCTION

In the previous paper@1# we provided a systemati
method of deriving the viscosities of biaxial nematic liqu
crystals. The method is based, in general, on the mean-
molecular approach developed by Doi@2# and Kuzuu and
Doi @3# for uniaxial nematics. We have adopted their meth
of calculating the viscosities for biaxial systems. In this wa
the two-director phenomenological theory proposed
Carlsson, Leslie, and Laverty@4# and Leslie, Laverty, and
Carlsson@5,6# was recovered. In particular, all the Lesl
viscosity coefficients were calculated in terms of suspens
parameters such as order parameters, diffusion const
temperature, and number density.

To proceed with the calculations, however, we employ
a mathematical approximation consisting in decoupling
the averages of fourth-rank tensors and expressing them
ing the appropriate averages of the second-rank tensors.
consequence, the derived formulas for the viscosity coe
cients involved only second-rank order parameters. In
uniaxial limit, they recovered six Leslie viscosities obtain
by Marrucci @7#.

Although the treatment presented in our previous w
was, in general, successful and allowed us to derive all
viscosity coefficients, the decoupling procedure used du
the calculations is rather rough and may lead, in the wo
case, to an error of the order of 100%. Perhaps the m
PRE 581063-651X/98/58~2!/1955~12!/$15.00
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evident failure caused by the use of the decoupling appr
mation was the prediction that two viscosities,m1 and m2 ,
are equal to zero.

The first purpose of this paper is therefore to improve
method by eliminating the above simplification. As a resu
we obtain exact formulas for the Leslie viscosities expres
in terms of both second- and fourth-rank order parame
and are free from the weaknesses caused by the use o
decoupling procedure.

Moreover, the limit of the derived expressions corr
sponding to the uniaxial symmetry,D`h is thoroughly dis-
cussed. It is shown that the formulas presented for the Le
coefficients may be regarded as a natural generalizatio
the existing formulas, which have recently been obtain
within the framework of uniaxial theory. Furthermore, w
demonstrate that the above-mentioned uniaxial formulas m
be easily improved in such a way that some effects relate
the residual biaxiality of the molecules are taken into a
count.

In this paper we deal also with the rotational diffusio
coefficients characterizing the Brownian motion of biax
molecules. We show that if molecular shapes are appr
mated by ellipsoids it is possible to express each diffus
coefficient with the common viscosityh and certain geo-
metrical factors depending on anisotropy of the ellipso
Although, as we show, such an approach to the problem
rotational motion of the molecule is rather rough, it enab
1955 © 1998 The American Physical Society
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us to compare relative magnitudes of the viscosity coe
cients.

This paper is organized as follows. In Sec. II we outli
the two-director formulation of the phenomenological theo
for biaxial nematic liquid crystals, calculate the symmet
part of the viscous stress tensor, and derive the equation
balance of angular momentum and, as a main result,
present the exact formulas for the Leslie viscosity coe
cients. Next, in Sec. III, we investigate our results in the lim
of uniaxial symmetry. In Sec. IV we deal with the proble
of the rotational diffusion tensor in the framework of hydr
dynamic approximation. Eventually, in Sec. V we prese
sample calculations of the viscosity coefficients perform
for a mean-field model of a biaxial nematic liquid crystal,
which pair interaction between molecules is described by
of
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Lennard-Jones type potential. Some comments on the re
presented are given in the concluding section, VI.

II. THE STRESS TENSOR AND THE LESLIE VISCOSITY
COEFFICIENTS

A. The continuum theory

The phenomenological description of viscosity for incom
pressible biaxial nematic liquid crystals has recently be
proposed by Leslie and co-workers@5,6# within the frame-
work of the two-director continuum theory. According to th
theory, the viscous stress tensors i j is expressed in terms o
two orthogonal vectors,mO andnO , describing the biaxiality of
the system,
s i j 5a1nI knI pAkpnI inI j1a2NinI j1a3NjnI i1a4Ai j 1a5AiknI knI j1a6AjknI knI i1b1mI kmI pAkpmI imI j1b2MimI j1b3M jmI i

1b5AikmI kmI j1b6AjkmI kmI i1NpmI p~m1mI inI j1m2mI jnI i !1nI kAkpmI p~m3mI inI j1m4mI jnI i !1m5mI kmI pAkpnI inI j ,
(2.1)
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where the vectorsN andM are defined as

N5nȮ2V–nO , M5mȮ 2V–mO ,

with V and A being antisymmetric and symmetric parts
the velocity gradient tensor] iv j , respectively,

2Vab5~]bva2]avb!, 2Aab5~]avb1]bva!.

The coefficientsa i , b i , andm i are called the Leslie viscos
ity coefficients and are linked by the four Onsager-Par
relations

a31a25a62a5 ,

b31b25b62b5 ,

m11m25m42m3 ,

m550. ~2.2!

Thus, we have 12 linearly independent viscosity coefficie
The balance of angular momentum is given by the follo

ing set of three scalar equations:

~g1Ni1g2Ai j nI j !lI i50, ~2.3!

~l1Mi1l2Ai j mI j !lI i50, ~2.4!

@~g11g31l1!Ni1~g21g42l2!Ai j nI j #mI j50, ~2.5!

where lO5mO 3nO . The coefficients appearing in the abo
equations are linear combinations of the Leslie viscositie

g15a32a2 , g25a62a5 ,

l15b32b2 , l25b62b5 ,
i

s.
-

g35m22m1 , g45m42m3 .

B. The viscous stress tensor

We consider an incompressible nematic biaxial liqu
crystal consisting of biaxial molecules. It is assumed that
molecules are modeled by ellipsoids of the axial rat
a:b:c, wherec>a>b. The orientation of the selected mo
ecule is defined by the rotationR carrying the fixed reference
frame~lO,mO ,nO ! into a frame~l,m,n! fixed in this molecule. The
unit vectorsl, m, andn coincide with the symmetry axes o
the ellipsoids,a, b, andc, respectively. The probability tha
the molecule has orientationR is given by the one-particle
distribution functionF5F(R).

To describe dynamics of the molecules we apply the d
fusional model, where the reorientation is treated as a
chastic Brownian precess. The rotational movement aro
the three principal axes is characterized by the diffusion t
sorDi j . Since it is assumed that the stochastic motion of
selected molecule proceeds around all three axes inde
dently, the tensorDi j is diagonal in the molecular frame o
reference. The appropriate diagonal elements are den
Dl , Dm , andDn . They correspond, respectively, to the d
fusion coefficients around thea, b, and c principal axes of
the ellipsoid.

In order to derive the viscous stress tensors i j from the
molecular level, we use an improved version of the meth
originally used by Kuzuu and Doi@3# in the case of uniaxial
nematics. The method we use essentially consists of sep
calculations of the symmetric and the antisymmetric parts
the viscous stress tensor. It was thoroughly described in@1#.
Here, we quote only the main results obtained in our pre
ous work.

The first important result derived was the formula for t
symmetric part of the viscous stress tensor expresse
terms of molecular parameters,
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2s i j
sym/dkBT52A^ninjnknp&Akp12B^mimjmkmp&Akp1C^nimjnkmpAkp1njminkmpAkp&2A^ninkAjk1njnkAik&

2B^mimkAjk1mjmkAik&1A1^ninkVk j1njnkVki&1B1^mimkVk j1mjmkVki&

1C1^ninkmjmpVkp1minknjmpVkp&. ~2.6!
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In the above expressionT is the temperature,kB is the Bolt-
zmann constant,d stands for the number density of the sy
tem, and^& denotes the average taken over the equilibri
distribution function. The parametersA, A1 , B, B1 , C, and
C1 are defined as

A52
f m

2

Dm
, A15

f m

Dm
, B52

f n
2

Dn
, B15

f n

Dn
,

C52S f m
2

Dm
2

f l
2

Dl
1

f n
2

Dn
D , C15S f l

Dl
2

f m

Dm
2

f n

Dn
D , ~2.7!

with the form factorsf l , f m , and f n ,

f l5
b22c2

b21c2 , f m5
a22c2

c21a2 , f n5
a22b2

a21b2 . ~2.8!

We obtained also the following set of scalar equatio
corresponding to the balance of angular momentum, E
~2.3!–~2.5!:

05~nI pmI q1nI qmI p!^~npmq1nqmp!l iv i&, ~2.9!

05~ lIpmI q1 lIqmI p!^~ l pmq1 l qmp!niv i&, ~2.10!
s
s.

05~ lIpnI q1 lIqnI p!^~ l pnq1 l qnp!miv i&, ~2.11!

where the vectorv i is the angular velocity due to the shea
ing flow @8#,

v52 l@m•~ f lA2V!•n#2m@ l•~ f mA1V!•n#

1n@m•~ f nA2V!• l#.

The formula~2.6! together with the three equations~2.9!–
~2.11! allow one to obtain the whole viscous stress ten
and, by comparison with the appropriate phenomenolog
formulas, to predict the Leslie viscosity coefficients.

In our previous work, to calculate the tensor averag
we applied the decoupling approximation of th
form ^aibjakAklbl&'^aibj&^akAklbl&, ^aibjakVklbl&
'^aibj&^akVklbl&, where ai and bi stand for the compo-
nents of vectorsni and mi , i.e., ai5ni ,mi , bi5n1 ,mi . In
the present paper, we carry out the averaging without us
the above-mentioned decoupling procedure. As a result,
obtain the following expression for the symmetric part of t
stress tensor~within the factordkBT/2!:
ssym52@Aa11Bb11Cc1#nOnO ~nOnO :A !12@Aa21Bb21Cc2#mO mO ~mO mO :A !12@A~2a41a3!1B~2b41b3!1C~c31c4!#

3@nOmO ~nOmO :A !1mO nO ~nOmO :A !#1@2A~a52a3!12B~b52b3!1C~c522c3!2Ad12Bd2#~nOnO–A1A–nOnO !

1@2A~a62a3!12B~b62b3!1C~c622c3!2Ad42Bd3#~mO mO –A1A–mO mO !22@A~12d12d423a3!

1B~12d22d323b3!23Cc3#/3A1@C1c71A1d11B1d2#~nO–N1N–nO !1@C1c81A1d41B1d3#~mO –M1M–mO !.

~2.12!
ter-

f

hat
r-
Similarly, after calculating the averages, the equations~2.9!–
~2.11! take the following forms:

05@XlnO–A1YlN#–mO , 05@XnmO –A1YnM #–lO,

05@XmnO–A1YmN#–lO, ~2.13!

with

Xl5 f l~2c41c51c6!, Yl5c82c7 ,

Xn5 f n~21d322d226b623c6!, Yn53~d31c8!,

Xm5 f m~21d122d426a523c5!, Ym53~d11c7!.
The parametersai , bi , ci , and di , being linear combina-
tions of the equilibrium averages of the basic functionsFi j

l ,
are quoted in Appendix B.

Each of the above quoted balance equations is unde
mined up to certain multiplierscl , cm , andcn , respectively.
Thus, Eqs.~2.13! are equivalent to the following system o
equations:

05@clXlnO–A1clYlN#–mO , ~2.14!

05@cnXnmO –A1cnYnM #–lO, ~2.15!

05@cmXmnO–A1cmYmN#–lO. ~2.16!

To determine the multipliers, we make use of the fact t
the coefficientsg2 , g4 , andl2 have to obey the Onsage
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Parodi relations~2.2!. Comparing Eqs.~2.14!–~2.16! with
Eqs. ~2.3!–~2.5!, we easily find that the relations~2.2! are
satisfied if and only if

cm5
C1c71A1d11B1d2

f m~21d122d426a523c5!
,

cn5
C1c81A1d41B1d3

f n~21d322d226b623c6!
,

cl5
C1~c72c8!1A1~d12d4!1B1~d22d3!

f l~2c41c51c6!
.

The above formulas allow one to determine the bala
equations~2.14!–~2.16! uniquely and to establish the coeffi
cients g1,2, l1,2 and g3,4. Having obtained the symmetri
part of the stress tensor and the balance equations, we
recover the whole stresss i j and thereby calculate the visco
ity coefficients.

C. The Leslie viscosity coefficients

Comparing Eqs.~2.14!–~2.16! to Eqs.~2.3!–~2.5!, and the
expression~2.12! to the symmetric part of the phenomen
logical stress tensor given by Eq.~2.1!, we arrive at the fol-
lowing formulas for the Leslie viscosities~within the com-
mon factordkBT/2!:

a152Aa112Bb112Cc1 ,

a25@C1c71A1d11B1d2#@12lm
21#,

a35@C1c71A1d11B1d2#@11lm
21#,

a4522@A~12d12d423a3!

1B~12d22d323b3!23Cc3#/3,

a55A~2a522a32d1!1B~2b522b32d2!

1C~c522c3!2C1c72A1d12B1d2 ,

a65A~2a522a32d1!1B~2b522b32d2!

1C~c522c3!1C1c71A1d11B1d2 ,

b152Aa212Bb212Cc2 ,

b25@C1c81A1d41B1d3#@12ln
21#,

b35@C1c81A1d41B1d3#@11ln
21#,

b55A~2a622a32d4!1B~2b622b32d3!

1C~c622c3!2C1c82A1d42B1d3 ,

b65A~2a622a32d4!1B~2b622b32d3!

1C~c622c3!1C1c81A1d41B1d3 ,
e

an

m152m25lm
21@C1c71A1d11B1d2#

1ln
21@C1c81A1d41B1d3#2l l

21@C1~c72c8!

1A1~d12d4!1B1~d22d3!#,

m35m45A~2a41a3!1B~2b41b3!1C~c31c4!,

m550, ~2.17!

where

l l5 f l

2c41c51c6

c82c7
,

lm5 f m

21d122d426a523c5

3~d11c7!
,

ln5 f n

21d322d226b623c6

3~d31c8!
.

The parametersl l , lm , andln are related to the coeffi
cientsg i andl i by

l l5
g21g42l2

g11g31l1
, ln5

l2

l1
, lm5

g2

g1
,

and determine the flow alignment angles,x l , xm , andxn ,
corresponding to the flow configurations in which the pla
of the shear is perpendicular to the directorlO, mO , or nO , re-
spectively. As showed by Carlsson, Leslie, and Laverty@4#
and Leslie@6#, only the above-mentioned three types of co
figurations are possible. The appropriate flow alignm
angles are given by

cos 2x l521/l l , cos 2xm521/lm , cos 2xn521/ln .

The obtained formulas for the viscosities are rather co
plicated. To predict the behavior of the Leslie coefficien
one has to know the temperature dependences of the thir
scalar order parameters as well as of the three rotational
fusion constants. Moreover, the form factorsf l , f m , and f n
describing the effective anisotropy of the shape of the m
ecules have to be known. In our approach, they play inst
a role of adjustable parameters that have to be establishe
fitting the theoretical predictions of the Leslie viscosities
experimental data.

It is also worth noting that if one deals with prolate bia
ial molecules~rodlike!, only five order parameters, namel
^F00

2 &, ^F22
2 &, ^F00

4 &, ^F22
4 &, and^F44

4 &, are of practical inter-
est, whereas the remaining eight are expected to be c
pletely negligible in the calculations. Such a behavior of t
order parameters has been confirmed by several approa
@9–12# based on the mean-field description of the biax
phase as well as by Monte Carlo simulations@13#. This
yields a significant simplification of the problem, especia
when the order parameters must be determined from exp
ment.
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III. THE LIMIT OF UNIAXIAL SYMMETRY

An important advantage of the method presented is
one can derive the uniaxial limit by simply setting the app
priate biaxial order parameters equal to zero. In this way
may easily find the viscosities for regular uniaxial nemat
consisting of axially symmetrical molecules. Moreover, t
transition from theD2h to theD`h symmetry allows one to
also obtain formulas for the Leslie coefficients describing
viscosity of the uniaxial phase composed of molecules p
sessing the biaxial symmetry. Such formulas seem ou
reach starting from the the uniaxial approach.

When the molecules possess symmetry axes, the form
for the Leslie coefficients describe the viscosity of a regu
uniaxial nematic liquid crystal. For the molecules mode
by the ellipsoids of revolution, all the formulas for the Les
coefficients get considerably simpler. Indeed, in this case
diffusion coefficientsDl andDm become identical,Dl5Dm
5D' . Similarly, f l5 f m52 f , where f 5(p221)/(p211)
with p5c/a being the ellipsoidal length-to-width ratio. Th
third form factor,f n is then equal to zero. Thus, according
Eqs. ~2.7! we straightforwardly obtainA52 f 2/D' , A15
2 f /D' , and B5B15C5C150. Furthermore, only two
scalar order parameters,^F00

2 & and ^F00
4 &, remain nonzero

in the limit considered.@Note that the basis function
F00

2 and F00
4 are simply the second- and fourth-ran

Legendre polynomials, respectively,F00
2 (R)5P2(nO–n),

F00
4 (R)5P4(nO–n)#.
In the limit considered, the tumbling parametersl l and

lm become identical and are equal to the parameterl,

l5 f
16S415S2114

35S2
. ~3.1!

The third parameter,ln , becomes undefined, which shou
take place when the system possesses cylindrical symm
and the directornO is perpendicular to the plane of shear.

All the ‘‘biaxial’’ coefficients, b i and m i vanish in the
discussed limiting case while the six ‘‘nematic’’ viscositie
a i[a i

u reduce to the following formulas~within the com-
mon factordkBT/2D'!:

a1
u522 f 2S4 , a2

u52 f ~11l21!S2 ,

a3
u52 f ~12l21!S2 ,

a4
u52 f 2~725S222S4!/35,

a5
u5 f @ f ~3S214S4!/71S2#,

a6
u5 f @ f ~3S214S4!/72S2#,

whereS25^F00
2 &, S45^F00

2 &.
The formulas quoted above for the Leslie viscosities

identical to those derived by Archer and Larson@14,15# and
by Kröger and Sellers@16# for the uniaxial case. It should
also be noted here that expression~3.1! for the tumbling
parameter was obtained earlier by Stepanov@17#. Very simi-
lar formulas for the viscosity coefficients were also deriv
by Kuzuu and Doi@3#. The only difference between th
Kuzuu-Doi results and ours concerns the tumbling param
at
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l. In their paper@3#, a complicated perturbation analysis w
performed and a more accurate expression forl, depending
on the scalar order parameters as well as the mean-field
tential, was obtained. However, the tumbling parameter c
culated from the formula~3.1!, obtained by neglecting flow-
induced distortions of the scalar order parameters, is
excellent agreement with the experimental measurement
most of the known nematic liquid crystals@15#.

When the uniaxial system is formed by biaxial molecule
the problem gets slightly more complicated. Some attent
should be devoted to the parametersl l and lm , which re-
main different in the limit considered. They are given by t
following formula:

l l ,m5 f l ,m

3~16S415S211475)^F02
2 &68A5^F02

4 &!

35~3S26)^F02
2 &!

,

where the upper and the lower signs correspond to the i
ces l and m, respectively. The two tumbling paramete
quoted above represent two types of flow alignments wh
are possible in the case of a uniaxial system compose
biaxial molecules:l l andlm correspond to the situations i
which the shear makes the molecules rotate around t
short axesm andl, respectively. Note also that parameterln
is, as in the previously discussed limiting case, unde
mined.

Since there is only one tumbling parameter in the uniax
phase, one of the quantities, eitherl l or lm , represents an
alignment that is physically unreachable. Formally, in vie
of Eqs.~2.14!–~2.16!, we have to set one of the multipliers
cl or cm , equal to zero, making the appropriate balan
equation undetermined. Notice also that the conditionl l
5lm reduces, in the limit considered, to the requireme
g350. Unfortunately, within the approach presented we c
not establish which tumbling parameter describes the ac
flow. One may, however, expect that it is the one that has
smaller magnitude, corresponding to the smaller value of
flow alignment angle.

The ‘‘biaxial’’ viscositiesb i andm3,4 vanish after setting
the biaxial parameters equal to zero. The viscositym1 is
given by m15(lm

212l l
21)(C1c71A1d11B1d2). Thus, as

l l5lm in the limit considered, we also obtain thatm15m2
50.

The six ‘‘uniaxial’’ viscositiesa i , which remain nonva-
nishing, unfortunately cannot be written in such a comp
form as in the case of axially symmetric molecules. They
still quite complex functions of the form factors, diffusio
constants, and the five nematic order parameters.

An interesting feature of the derived formulaa i is the
existence, apart from terms proportional to 1/Dl and 1/Dm ,
of terms proportional to 1/Dn . The latter are present even
one retains only the main order parameters^F00

2 & and^F00
4 &.

For example, after dropping the secondary order parame
the viscosity coefficienta1 reads~within the factordkBT/2!

a152F S f m
2

Dm
1

f l
2

Dl
D 2

f n
2

4Dn
G^F00

4 &.

Therefore, the ratiosDl ,m /Dn can serve as control param
eters providing information as to whether the degree of fr
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dom related to the rotation around the long molecular a
may by neglected while considering the viscosity of t
uniaxial nematic liquid crystal.

The coefficientsa i
u describe the viscous properties of a

idealized system composed of long, thin rods in which
diffusion constantsDl andDm as well as the form factorsf l
and f m are identical. Moreover, not all effects related to t
rotational motion about the long axis are taken into accou
On the other hand, molecules composing real uniaxial n
atics exhibit residual biaxiality in their shapes and in t
diffusion coefficients as well. It is thus worth improving th
formulasa i

u so that the above-mentioned effects related
molecular anisotropy are taken into account. We show
the exact formulas~2.17! enable one to estimate the corre
tions to the viscositiesa i

u caused by the biaxiality of the
molecules.

In the case of an elongated molecule, the constantsDl and
Dm do not differ much, while the third diffusion constant
of considerably greater magnitude,Dn@Dl ,m . It is thus con-
venient to describe the anisotropy of the diffusion coe
cients and, thereby, to express the appropriate biaxial cor
tions in terms of two parametersd ande1 ,

d5D' /Dn , ~3.2!

e15~Dl2Dm!/D' , ~3.3!

with D'[Dm . Furthermore, to describe the anisotropy
lated to the form factorsf m and f m we introduce the param
etere2 ,

e25~ f l2 f m!/ f , ~3.4!

where f [ f m .
The parameterd is the ratio between spinning and tum

bling diffusion of the molecule. When it is small, all th
terms proportional to 1/Dn may be neglected. The secon
parameter,e1 , measures asymmetry in the rotational moti
about the short axes. NMR studies of
methoxybenzylidene-48-butylaniline~MBBA ! @18,19# and 4-
n-pentyloxybenzylidene-48-heptylaniline ~50.7! @20# show
that d is a quantity of the order of 1022. On the other hand
the experimental data of 50.7@20# suggest thate1 may be of
the order of 1021. One may thus assume that for a typic
nematic liquid crystal composed of elongated moleculese1
@d. As far as the parametere2 is concerned, no experimen
tal evidence is available. Therefore, we assume thate1 and
e2 are of the same order of magnitude. Hence, we will
glect in our considerations the parameterd and express the
corrections in terms of the parameterse1 ande2 only. Like-
wise, we neglect the secondary order parameters^Fi j

l &, with
iÞ j , since they are expected to be much smaller thanS2 and
S4 when the uniaxial system is composed of elongated m
ecules.

To calculate the corrections we express the diffusion
efficients andf l and f m , using the parametersD' , d, and
e1 , and f and e2 , respectively, and insert them into E
~2.17!. Next, we expand the appropriate formulas into ser
with respect toe1,2 and d, retaining only terms linear ine1
ande2 . As a result we obtain

a1,45a1,4
u ~112ea!,

a2,35a2,3
u ~112eb!,
is

e

t.
-
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l

-
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-

s

a5,65a5,6
u 1~a5

u1a6
u!ea7g2

ueb ,

where 4ea52e22e1 , 4eb5e12e2 , and g2
u5a6

u2a5
u . In

the last line, the signs ‘‘2’’ and ‘‘ 1’’ correspond toa5 and
a6, respectively. Note also that the coefficientsa i quoted
above obey the Onsager-Parodi relationa21a35a62a5 .
The quantitiesea and eb should be regarded as adjustab
parameters that need to be evaluated by fitting to experim
tal data.

To complete this section, we must mention some fa
concerning the three balance equations~2.14!–~2.16! in the
limit of the D`h symmetry. It is easy to check that the fir
and third equations take the formsg–lO50 andg–mO 50, re-
spectively, whereg5g2A–nO1g1N. One may also prove tha
the second balance equation, Eq.~2.15!, becomes undeter
mined in the limit discussed. We can rewrite both sca
equations obtained in an equivalent form asnO3g50. We
see, therefore, that in the limit of uniaxial symmetry Eq
~2.14!–~2.16! recover the phenomenological equation f
balance of angular momentum obtained by Ericksen and
slie. Note here that the Ericksen-Leslie equation involves
general, also the molecular fieldh and has the formnO3(h
1g)50. However, at equilibrium, in the absence of extern
fields, the vectorh is collinear to the directornO and may be
omitted.

IV. THE ROTATIONAL DIFFUSION COEFFICIENTS

The formulas~2.17! derived in the preceding section a
low one to predict all the Leslie viscosities, provided the a
ratio a:b:c is established and the order parameters^Fi j

l & as
well as the three rotational diffusion coefficientsDl , Dm ,
andDn are known functions of temperature. All the abov
mentioned quantities are, unfortunately, out of reach wit
the method we use to derive formulas for the viscosity co
ficients; here they play the role of input parameters and m
be calculated separately or taken from experiment.

However, the problem of the evaluation of the rotation
diffusion tensor gets somewhat easier if one assumes tha
molecule may be treated as a macroscopic body immerse
a viscous medium. Within this approximation, all the diff
sion coefficients may be calculated by hydrodynamic me
ods. Such a treatment enables one to express the temper
dependences ofDl , Dm , andDn , through the common me
dium viscosityh.

In order to determine the diffusion coefficients, we co
sider the selected molecule undergoing a stochastic rotati
Brownian motion. Since the molecule is regarded as a m
roscopic particle immersed in a viscous fluid, its rotation
motion may be considered as rotational diffusion. Therefo
one can follow the Einstein concept and reduce the prob
of calculating the diffusion coefficients to the problem
calculating the rotational friction coefficients,j i ( i
5 l ,m,n), which are defined in the molecular frame of re
erence by the relationTi5j iv i , where T stands for the
torque exerted on the molecule rotating with the angular
locity v. The desired relation betweenj i and Di reads
@21,22#

Di5kBT/j i . ~4.1!
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In our approach, the shapes of the molecules are mod
by ellipsoids with the principal axesa, b, c. The principal
axes coincide with the molecular frame of reference,
scribed by the unit vectorsl, m, n, respectively. The mos
complete treatment of the problem of rotational motion of
ellipsoidal body immersed in a viscous medium was giv
long ago by Jeffery in Ref.@8#. According to Jeffery, com-
ponents of the torqueT acting on the particle rotating with
small angular velocityv are the following:

Tl5
16ph

3~b2b01c2g0!
~b21c2!v l , ~4.2!

Tm5
16ph

3~c2g01a2a0!
~c21a2!vm , ~4.3!

Tn5
16ph

3~a2a01b2b0!
~a21b2!vn , ~4.4!

where the constantsa0 , b0 , andg0 are defined in Appendix
C andh5h(T) is the viscosity of the medium in which th
molecule is immersed. Note that the lengths of the princi
axes of the molecule considered are 2a, 2b, and 2c, respec-
tively.

From the relation~4.1! and Eqs.~4.2!–~4.4!, we straight-
forwardly find

Dl5D0r l , Dm5D0rm , Dn5D0rn , ~4.5!

with

D053kBT/16ph, ~4.6!

and

r l5
b2b01c2g0

b21c2 , rm5
c2g01a2a0

c21a2 , rn5
a2a01b2b0

a21b2 .

~4.7!

Notice also that if the considered molecule is spherica
symmetric (a5b5c), Eqs.~4.5! reduce to the well-known
Stokes formula

Dl5Dm5Dn5kBT/8pha3.

Although the use of the formulas~4.5! yields a significant
simplification of the problem of calculating the tensorDi j ,
one should be aware that the applicability of the obtain
expressions for the diffusion coefficients is, unfortunate
limited. The validity of the hydrodynamic approach that w
have applied is, in general, not obvious; it is suitable only
description of the rotational diffusion of large molecules.
particular, the prediction that theDl :Dm :Dn ratio is inde-
pendent of the temperature seems to be rather a rough
proximation.

In the case of uniaxial nematics, the problem of rotatio
Brownian motion has been successfully described in
framework of the rotational diffusion model proposed
Tarroni and Zannoni@23#, who have extended the Norid
@24,25# model to asymmetric molecules. Within the Tarron
Zannoni model, the temperature dependences of the r
tional diffusion coefficients obey the simple Arrhenius ru
Di5D0

i exp@2Ea
i /kBT#, i 5 l ,m,n, where Ea

i are activation
energies andD0

i are certain constants. The activation en
giesEa

l andEa
m characterizing the rotational motion aroun

the short molecular axes are assumed to be identicalEa
l

ed

-

n
n

l

y

d
,

r

p-

l
e

ta-
,

-

5Ea
m5Ea

' . Such a treatment has proved to give a fairly go
prediction of the temperature behavior of the diffusion co
ficients in the case of nematic phases as well as smect
phases@20,26#.

One can also expect that in the case of biaxial nem
phase, the temperature dependences ofDi are described by
the Arrhenius-type relation with two different values ofEa

l

andEa
m . Therefore, the formulas~4.5! may be regarded as

rough approximation of the Tarroni-Zannoni model,
which all the activation energies are identical. One may a
expect that Eqs.~4.5! give a good qualitative description o
the temperature behavior of the diffusion coefficients, es
cially if one takes into account the fact that the diffusio
coefficients vary rather smoothly with the temperature.

The use of the formulas~4.5! enables one to calculat
relative magnitudes of the diffusion coefficients on the ba
of the temperature dependences of the order parameters^Fi j

l &
only. This is an important argument motivating analysis
the problem of the rotational diffusion tensor within the h
drodynamic approximation. In the next section we apply
derived formulas for the viscosity coefficients to a simp
mean-field model of a biaxial nematic liquid crystal.

V. SAMPLE CALCULATIONS

To estimate the temperature behavior of relative mag
tudes of the viscosity coefficients, we perform numerical c
culations for a simple model of the biaxial phase, in whi
interactions between the molecular pairs are described by
modified Lennard-Jones potential@27#

U125U12~s/r !54e0@~s/r !m2~s/r !n#. ~5.1!

Herer 5uru is the distance between the centers of mass of
molecules, parametere0 is the depth of the potential, ands
is a scalar function depending on the orientations of the m
ecules,R1 and R2 , and on the orientationRu of the unit
vectoru[r/r , s5s(R1 ,R2 ,Ru). We use a relatively simple
form of s,

s5s01s1F00
2 ~R2

21R1!1s2F22
2 ~R2

21R1!1s3@F02
2 ~R2

21R1!

1F20
2 ~R2

21R1!#1s4@F00
2 ~Ru

21R1!1F00
2 ~Ru

21R2!#

1s5@F02
2 ~Ru

21R1!1F02
2 ~Ru

21R2!#, ~5.2!

whereFi j
l are invariants of theD2h group defined in Appen-

dix A, si are certain constants, andR2
21R1 denotes the rela-

tive orientation of the molecular pair;Ru
21Ri ( i 51,2) stands

for the relative orientation of the vectoru and thei th mol-
ecule.

In order to determine the coefficientssi , we assume tha
the molecules are modeled by ellipsoids with the princi
axes 2a, 2b, and 2c and apply the modified excluded vo
ume method@12#. It is assumed that for a fixed orientation o
two molecules, a minimum distance between their center
mass is determined by the conditionU1250. Such a treat-
ment is a generalization of the method developed by R
grok and Sokalski@27# in the case of nematic molecules. A
a result, we obtains052(a1b1c)/3, s45(2c2b2a)/3,
s55)(a2b)/3b, ands15s25s350.
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FIG. 1. Temperature dependence of the ord
parametersS25^F00

2 &, S45^F00
4 &, B225^F22

2 &,
B425^F22

4 &, and,B445^F44
4 & on the reduced tem-

peratureT!.
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Our aim is to find the one-particle distribution functionF
as a function of the temperature and, thereby, to determ
the temperature dependence of the order parameters. Fo
purpose we follow the method proposed in Ref.@12#. It is
based on the analysis of the Helmholtz free energy functio
constructed within the Onsager@28# mean-field approxima-
tion. In the cited paper@12# we showed that the requireme
that at equilibrium the free energy must be a minimum w
respect toF leads to the following self-consistent equation
the Hammerstein type for the one-particle distribution fun
tion F:

ln@F#5l0 (
j 50,2

(
rmn

Krn
j Fmn

j ^Fmr
j &. ~5.3!

The parameterl0 is given by

l05l0~T!!5B2~T!!r!/v0 , ~5.4!

where T!5kBT/e0 denotes a reduced temperature,v0
54pabc/3 is the volume of the molecule, andr![v0d,
e
this

al

-

with d being the number density, is the packing fraction. T
function B2(T!) is given by the integral

B2~T!!5E
0

`

x2$exp@2U12~x!/kBT#21%dx.

For the Lennard-Jones potential, the above integral is
pressed by the following infinite series:

3B2~T!!5(
s50

`
1

s!

n

m S 1

T!D @~s11!~m2n!13#/m

GS sn1n23

m D
2(

s50

`
1

s! S 1

T!D @s~m2n!13#/m

GS sn1m23

m D .

~5.5!

The coefficientsKi j
l are the following analytical functions o

the parameterssi ~within the common factor 4p/35!:

K00
0 535s0

3142s5
2s0212s5

2s4142s4
2s014s4

3 ,
is-
e

FIG. 2. Temperature dependence of the v
cosity coefficientsa i on the reduced temperatur
T!. The results are given in units ofdkBT/2D0 .
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FIG. 3. Temperature dependence of the v
cosity coefficientsb i andm i on the reduced tem-
peratureT!. The results are given in units o
dkBT/2D0 .
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K00
2 56s4~2s4

217s4s022s5
2!,

K20
2 5K02

2 56s5~7s4s02s4
22s5

2!,

K22
2 56s5

2~7s024s4!.

We have carried out the calculations for the Lenna
Jones potential~5.1! with m512 andn56 and for the ellip-
soidal axis ratioa:b:c55:1:10. For theassumed axis ratio
the form factors, f l , f m , and f n are f l520.980, f m5
20.600, f n50.923. Likewise, the ratio of the rotational di
fusion coefficients, according to Eq.~4.5!, has been found to
beDl :Dm :Dn52.469:2.909:6.852. The packing fractionr!

has been set equal to 0.2.
We have solved the self-consistent equation~5.3! numeri-

cally and calculated the thirteen order parameters^Fi j
l &,

( l 52,4) as functions of the reduced temperatureT!. In
Fig. 1 the temperature dependences of the five main sec
and fourth-rank order parameters,^F00

2 &, ^F22
2 &, ^F00

4 &,
^F44

4 &, and^F22
4 & are plotted. It is also worth noting that th

values of the remaining eight order parameters,^Fi j
l & with

iÞ j , are two or three orders of magnitude smaller than th
with i 5 j .

The values of the order parameters^Fii
l & allow one to

determine the phase uniquely. As seen, the system exh
the first-order phase transition from isotropic to uniax
nematic phase atT!50.841 and the second-order phase tra
sition from uniaxial to biaxial nematic phase atT!50.483.

The obtained values of the order parameters allow u
calculate all the viscosities up to the common fac
dkBT/2D0 , which remains undetermined. However, this
enough to compare relative magnitudes of the viscosity
efficients.

At this point, one remark concerning the ‘‘isotropic’’ vis
cosity coefficienta4 is in order. One should be aware th
the formula derived describes the contribution to the visc
ity originating only from the rotational motion of the mo
ecules. In particular, it vanishes when the molecules
spherically symmetric. Thus, to take into account other c
tributions to momentum transport also, one has to modify
-

d-

e

its
l
-

to
r

-

-

re
-
e

original viscositya4 . The simplest way to improvea4 is to
replace it with the suma41a0 @15#, wherea05a0(T) is a
certain viscosity coefficient that does not depend on the o
parameters. In general, the new term,a0 , is a quantity whose
temperature dependence needs to be taken from experim
Fortunately, in this paper, to evaluate the viscositya0 we
may make use of the fact that, within the hydrodynamic a
proximation, the coefficienta4 and the shear viscosityh
become identical in the isotropic phase. Therefore, the
cosity a0 is given by the equationa05h2a4(^Fi j

l &50).
Making use of the the relation~4.6!, we easily find that, in
units of dkBT/2D0 , the viscositya0 is a constant

a05
3v0

8pr! 2
1

5 S f l
2

r l
1

f m
2

rm
1

f n
2

rn
D , ~5.6!

where the parametersr i are given by Eqs.~4.7!. We have
also made use of the fact that, in the considered mode
biaxial nematic, the packing fractionr! and the number den
sity d are linked by the relationr!5dv0 .

Figures 2 and 3 show the temperature behavior of
viscositiesa i , and b i and m i , respectively. All the visco-
sity coefficients are given in units ofdkBT/2D0 , where
D05D0(T) is given by Eq.~4.6!. ~To calculate the viscosi-
ties all thirteen order parameters have been used; in Fi
only five of them are plotted.!

In the uniaxial phase, only the six uniaxial viscositiesa i
are present. As seen, the coefficientsa1 , a5 , anda2 are of
the greatest magnitudes, while the viscositya3 is negligible.
It is also worth noting that the signs and relative magnitud
of the obtained viscosities close to the isotropic-nema
transition point are in fairly good agreement with the expe
mental evidence for MBBA@29#. One may thus expect tha
in spite of all the approximations made, the results obtain
capture the essential viscous properties of the biaxial ph

Below the uniaxial-biaxial transition temperature, all fi
teen viscosity coefficients are nonzero. In the deep bia
phase one may divide them roughly, with respect to th
magnitudes, into three groups. The four coefficientsa1 , a2 ,
a5 , andb1 , are of the greatest magnitudes. Then, the se
viscositiesb3 , b5 , b6 , m1,2, andm3,4, belong to the second
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group. Finally, the four viscositiesa3 , a4 , a6 , andb2 are,
approximately, an order of magnitude smaller than th
from the first group.

Magnitudes of the coefficientsb i and m3,4 are, in units
of dkBT/2D0 , decreasing functions of temperature. Mag
tudes ofm1,2 first decrease and then increase with tempe
ture. As far as the viscositiesa1 , a2 , a3 , a5 , and a6
are concerned, their magnitudes increase withT! in the bi-
axial phase and decrease after reaching the biaxial-unia
transition temperature. The coefficienta4 is an increasing
function of the temperature either in biaxial or in nema
phase.

Note also that the results obtained for the biaxial ph
are, generally, in agreement with the predictions from R
@4#. In particular, they fulfill two inequalities that must b
obeyed for a ‘‘rodlike’’ biaxial nematic:m1.m2 , and m1
2m2.b32b2 . Also, our results confirm the prediction th
the viscositiesm i cannot be small compared to the coef
cientsb i .

According to Leslie, Laverty, and Carlsson@5#, the re-
quirement that the Rayleigh dissipation function has to
positively defined yields twelve inequalities for the viscos
coefficients to obey. They are quoted in Appendix D. It tur
out that the obtained viscosities satisfy all the abo
mentioned inequalities. However, one should be aware
the coefficientsb i are quite sensitive to the diffusion con
stants as well as the form factors and for certain val
of Dl ,m and f l .m some of the inequalities may be not fu
filled. Nevertheless, the fact that the calculated viscosi
obey the relations from Appendix D is very encouragi
and testifies that the the proposed formulas~2.17! may be
suited to describing the viscous properties of the biax
phase.

VI. CONCLUSIONS

To summarize, in the present paper we have improved
method of deriving the Leslie viscosity coefficients for bia
ial nematic liquid crystals presented in Ref.@1#. We have
carried out all the calculations without using the decoupl
procedures employed previously. The formulas obtain
for the Leslie viscosities are expressed in terms of seco
and fourth-rank order parameters, three rotational diffus
constants, number density, temperature, and cer
parameters depending on the geometry of the molecu
What is important is that the viscosity coefficients presen
satisfy the four Onsager-Parodi thermodynamical relati
~2.2!.

The method developed is based upon a relatively sm
number of assumptions, which makes our result quite g
eral. In particular, the applicability of the viscosities deriv
is not limited by the use of a certain type of pair-interacti
potential. The main assumption made, however, concerns
molecular shapes modeled by ellipsoids.

To our knowledge, pertinent formulas for the Leslie co
ficients in the case of the biaxial system have not been
sented before. Thus, in order to find a relation between
e
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method and existing approaches we have investigated
obtained expressions in the limit of uniaxial symmetry.
turned out that in the limit considered, our results reprodu
those obtained by Archer and Larson@15# and Kröger and
Sellers@16# for the uniaxial system.

Furthermore, we have shown that it is possible to impro
the above-mentioned limiting uniaxial formulas for the L
slie viscosities in such a way that the residual molecu
biaxiality, related to the shape as well as the diffusion co
ficients, is taken into account. We have found that in the c
of uniaxial nematic liquid crystals composed of elongat
molecules, all the effects due to the molecular biaxiality m
be described by two parameters,ea and eb , which may be
useful in interpreting experimental data.

In the present paper we have also dealt with the is
of the diffusion coefficientsDl , Dm , andDn . We have con-
sidered the stochastic rotational motion of the molecu
within the hydrodynamic approximation and express
the temperature dependence of the diffusion coefficie
through the common shear viscosityh. This enabled us to
estimate the relative magnitudes of the viscosity coefficie
We have carried out the appropriate calculations for a sim
model of a biaxial nematic liquid crystal in which the pa
interactions are described by the modified Lennard-Jones
tential. We have found that in the biaxial phase, near
uniaxial-biaxial transition point, magnitudes of the biaxi
viscositiesb i andm i are much smaller than the magnitud
of the largest uniaxial coefficientsa2 , a5 , and a1 . How-
ever, in the deep biaxial phase, the coefficientsb i have
proved to be of the same order of magnitude as the visc
ties a i .
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APPENDIX A

The basic functionsFi j
l generating the solution space fo

the biaxial system are given by the following formu
@12,30#:

Fi j
l ~R!5~& !222d i02d0 j (

srP$1,21%
~21! l ~r2s!/2Dr i ,s j

~ l ! ~R!,

wherel ,i , j are integer numbers andR is the rotation param-
eterized by three Euler angles.Di j

( l ) are the standard rotatio
matrix elements. The functionsFi j

l obey the orthonormality
relation

E dRFi j
l ~R!Fmn

k ~R!5d lkd imd jn8p2/~2l 11!.

APPENDIX B

The calculated coefficientsai , bi , ci , anddi are as fol-
lows:
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APPENDIX C

The parametersa0 , b0 , andg0 are given by the following integrals:

a05a23E
0

`

~x11!2 3/2@x1~b/a!2#2 1/2@x1~c/a!2#2 1/2dx,

b05b23E
0

`

~x11!2 3/2@x1~a/b!2#2 1/2@x1~c/b!2#2 1/2dx,

g05c23E
0

`

~x11!2 3/2@x1~b/c!2#2 1/2@x1~a/c!2#2 1/2dx.

APPENDIX D

Due to the requirement that Rayleigh dissipation function must be positive, the viscosity coefficients have to o
following twelve inequalities@5#:

2a41a51a6.0, 2a41b51b6.0,

2a41a51a61b51b61m31m4.0, 2a41a51a61a1.0,

2a41b51b61b1.0, g1.0, l1.0, g11l11g3.0,

a4
2,~2a41a51a61a1!~2a41b51b61b1!,

g2
2,g1~2a41a51a6!, l2

2,l1~2a41b51b6!,

~a62a52b61b51m42m3!2.~g11l11g3!~2a41a51a61b51b61m31m4!.
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